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Abstract. The soliton dilute-gas phenomenology is used to study the statisiical mechanics
of the $* system with long-range interaction potential. Both the continuum and the
discrete phonon excitations with their corresponding dispersion relations and non-linear
excitations (walls or kinks) are investigated. In the continuum model, we show that the
kink free energy and density decrease when the range of interaction increases. In the
discrete model where the kink width is small, as a resuft of the collective coordinate
method associated with Dirac’s comstrained Hamiltonian dynamics, the mass and the
potential energy of kink vary periodically with the kink position in the lattice. This leads
to a correction of the statistical resuits obtained in the continuum model.

1. Introduction

In the past few decades, a growing interest has been shown in the statistical mechanics
of non-linear models of condensed-matter systems where the associated field equa-
tions of motion admit soliton solutions. In the continuum non-linear Klein—Gordon
systems, such as $* and sine-Gordon models, which possess kink solutions (topologi-
cal solitons), it has been shown, through the functional-integral technique or ideal-gas
phenomenoiogy, that the low-temperature thermodynamics of the systems are sensi-
tive to and even dominated by solitons (Krumhansl and Schrieffer 1975, Mazenko and
Sahni 1978, Schneider and Stoll 1980, Currie et a/ 1980). In particular, the presence
of solitons in the system is signalled by a term proportional to exp(—FE, /kgT) in
the low-temperature free energy, where E, is the energy of the soliton, kg is the
Boltzmann constant and T is the temperature,

The functional-integral technique has also been used to study the thermodynamics
of the continuous system with long-range interaction of Kac-Baker type. By convert-
ing the functional integral into an equivalent nearest-neighbour problem, Sarker and
Krumhansi (SK) (1981) evaluated the partition function of the long-range interaction
model. They obtained the same proportional term and they concluded that, since B,
increases with increasing range of interactions while the proportional (exponential)
term approaches zero, the long-range interaction systern undergoes a second phase
transition in the infinite-range limit.

All the aforementioned thermodynamics studies have been limited to the contin-
uum models. The soliton {or the antisoliton) width has therefore been taken to be
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large enough to avoid the discreteness effects of the lattice. The soliton energy E,
was just a constant but, in some materials, the soliton extension is just a few lattice
spacings (one or two) and the discreteness effects on soliton static and dynamical
properties cannot be neglected (Woafo er al (1991) and references therein; hereafior,
referred to as I).

In 1, following initial investigations on the lattice discreteness, we have shown that
in the long-range interaction system the kink energy varies periodically with the kink
centre-of-mass position. The potential barrier and the pinning frequency suffered
by the kink decrease when the range of interaction increases. Our purpose in this
paper is to investigate the discreteness effects on the dilute-gas statistical mechanics
of the long-range interaction ®4 systems. The influence of the range of interaction
is considered. The organization of the paper is as follows.

In section 2, we present the discrete $* lattice with long-range interaction poten-
tial of Kac-Baker type. The various low-energy discrete excitations (phonons) of the
resulting equation of motion are discussed with their corresponding dispersion rela-
tions. In the large-displacement regime, we show that the implicit kink solution of
the continuum field can be adequately approximated by an explicit hyperbolic tangent
profile (at least for some values of the range of interaction). The interaction between
kinks and phonons is analysed through the linearized stability equation. Owing to
the complexity of this equation whose explicit solution has not yet been obtained, an
approximated phase shift which fits well with the short-range case is proposed.

In section 3, we review the results of the discreteness studies of L. In section 4,
the ideal dilute-gas phenomenology calculations are presented. The grand partition
function, the free energy and the density » of kinks and antikinks are evaluated both
in the continvum and in the discrete limits. In the continuum limit, a comparison
with the transfer-integral calculation performed by sk is made. In the discrete limit,
it is seen that, owing to the X-dependence of the kink mass and kink energy (X
is the position of the kink in the lattice), the discreteness causes corrections to the
continuum statistical mechanics. These corrections are seen to disappear when the
kink width increases. We show that the kink density decreases when the range of
interaction increases. The temperature dependence of the kink density n is seen to
appear through ,BE,({O) = Eﬁu) ks T (Ef(u) is the rest energy of the kink).

Section 35 is devoted to a summary of our resujts.

2. The ®* lattice with long-range interaction potential

The Hamiltonian of the discrete ®* chain with long-range interaction potential has
the form

H=%Z@?+Zv(ye)+%ZW1(yi-yj)2 0y

i

where y; is a scalar dimensionless displacement of the ion i on a onc-dimensional
lattice. The equilibrium sites of ions are z; = ¢b. The lattice spacing b is sct equal
to unjty. The first term of the Hamiltonian (1) is the kinetic energy. The dot on y;
represents time differentiation. V(y;) is the double-well substrate potential with a
pair of minima y; = x1. Its simplified form is

V(y;) = 3y - 1)% @
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The ions interact via a pair potential V;; which is taken to be of Kac-Baker form
(Baker 1961, Kac and Helfand 1973)

Vi; =[C(1 = r)f2r]rli=il, 3

C' is a constant measuring the elastic energy of the lattice. r is the parameter which
characterized the range of interaction with 0 < r < 1. |¢ — j| is the distance between
ions on sites ¢ and j. The virtue of this interaction potential, commonly encountered
in physical systems such as an Ising ferromagnet lattice, is that the range of interaction
can be varied continuously. The interaction between particles falls off exponentially
as the separation between them increases. The pre-factor 1 — r in equation (3) is
chosen to ensure that the total potential experienced by one atom, due to all others,
is finite in the thermodynamic limit where the number N of particles js infinite. This
total potential is equal to 3 ., Vi, = C.

When r = 0, the model reduces to the well known ®* chain with first-neighbour
interactions. On the other hand, the limit » — 1 which should be taken only when
N — oo defines the infinite-range problem. In the Hamiltonian (1), the potential
energy of the discrete chain is the sum of the last two terms:

U=3> Vilwm—y)? + 5> (s -1)% @
j#i i
From the Hamiltonian (1), the equation of motion of the ith particle is
i — v+ ¥+ [C( =) /r] Y iy, — ) =0, )
J#i
Let
d=1-[C(1-r)/r]> ri=il=1-2C 6
FE
and define the auxiliary quantity (see SK)
Li(y; =[C(L=r)[r] Y iy, 9
i
Equation {5} can be rewritten as
9 —dy; + ¥¥ = L,(v;)- 8
L;(y;) satisfies the recursive relation
(r+ T'_I)Li = Li+1 + Lz’—l + [C(1 - r)/r](yi+1 + Yo — 2ry;). ®)

We can make the continuum approximation y; — y(z,t), L;(t) — L(z, ), to obtain
the partial differential equation
e + [C(14+ 1) = tlyge + 198, — (L =) (G +4* - 9) = 0. (10)

For r = 0, equation (10) reduces to the ®* continuum equation (Krumhans! and
Schrieffer 1975).

The discrete equation (8) and the continuum equation (10) have three trivial
solutions which correspond to the unstable state y; = 0 or y = 0 and the two stable
states y; = £1. Apart from these solutions, thete are other solutions of equation (8)
and equation (10): the smail-amplitude solutions which are discussed in section 2.1
and the soliton solution discussed in section 2.2, In section 2.3, we analyse the
problem of interaction between the kink and phonons.
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2.1. Discrete and continuum phonons

21.1. Case 1. oscillations about y = 0. The first small-amplitude states of the model
arc the unstable oscillations about the top of the double well (y = 0). Neglecting the
non-linear term y? in equation (8) in view of finding linear wave solutions and using
the recursive relation (9), one obtains the discrete equation

(’”2 + )i~ "'(ﬁi-q-l +§4)= ["'2 +1-2C(1+7)]y; +[C(1+7) - 7’](9;‘-1-1 + Y1)

1)
whose solution is
y; = asin(gi —w,t)
with the discrete dispersion relation {« is the amplitude)
wl={r?+1~2C(1+r)+2[C(1 4 7)—r]cosg}/[2rcos g — (* + 1)].
(12a)

For small values of the dimensionless wavevector g, equation (12a) gives
wh = —14 C(1+r)g*/I(r—1)* + rg’] {12b)

which is the continuum dispersion relation that can be obtained from the linear form
of equation (10). In order that «w? (equation (12b)) be positive, g must satisfy the
inequality relation

@ >0 -r/{Cl+r)~1].

2.1.2. Case 2: oscillations about the bottom of the well y; = + 1. This state corresponds
to the situation in which all the particles are lowered to the bottom of one of the
wells. Then we can write y; = +1 + v; where v, is a linear wave. Substitution in
equation (8) yields
(PP 4 1) = (1 + 8y} = =2[r’ + 14+ C(L+ N v+ [2r+ COAP(vip s viy)-
(13)
Taking v; = arsin(gi—w,t) and substituting in equation (13), we obtain the discrete
dispersion relation
wi={-2[2r+ C(1 4 r)]cosg + [r* + 1+ C(1+ n)]}/(r* + 1 ~ 27 cos g).
(14a)
When g — 0, equation (142) reduces to
wg =2+ C(1+r)g*/l(r—1)* + rg’] (14b)

which corresponds to the dispersion relation of the continuum model. It is obvious
that, when r = 0, relations {14a) and (14b) reduce to the discrete and continuum
dispersion relations of the ®* chain with first-neighbour interactions. We shall refer

to the dispersion relations (14e) and (14b) when studying the statistical mechanics of
the system.
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2.2. Large-amplitude solutions

For large-amplitude solutions (kinks), equation (8) is analytically intractable but, since
its continuum form equation (10) can be solved, one can take its solution as the first-
order solution of equation (8) (see I). Neglecting the fourth-order term ry,, in
equation (10), in the spirit of the continuum approximation and because this term
vanishes when r — 0 (or for zero-velocity solitons), the solution y{x, ) of equation
(10) is given by the implicit formula (SK)

t (z - V)/V2E = —3(0 /2)/?sinh ™ [20 /(1 + o)]* /%y

+ (14 30}/ 2tanh " {[(1 + 30) /(1 + o + 20%y)]*/?y} (15
where

E2=[C+r)—r—VH1-r?/(1-r)? (162)
and

o =r/(1-7)%. (16b)

y(z,1} is a topological soliton with a width measured by £ and which propagates
with a constant velocity V' in the absence of perturbations. The positive (negative)
sign corresponds to a kink (antikink).

In I, we have simplified the implicit solution (15) by the hyperbolic tangent wave-
form

¥ (2, 1) = £ tanh[K(x — V1)] | (17)
where

K?=1/2€% = 1/2[Ci(r) -V (18a)
and

C3(r) =[C(L +7) - r]/(1 ~7)? (180)

K~1 = /2¢ defines the spatial extension of the kink. Tt increases indefinitely as the
range of interaction tends to the infinite limit (» — 1).

There are two reasons which support the validity of the approximation (17). First,
the soliton profile given by (15) suffers very slightly because of the approximation.
Second, the soliton erergy obtained in the continuum limit from (17) is

By = (2v2/3)€ + (2v2/3)(V?/£) (19)
which approximately corresponds to
E, = (2v2/3)6(1 + 8o - 8ho%) + (2V?/EV2)(} + o - #5507

calculated by sK from the implicit solution (15) (see the appendix where the integra-
tion of the kink energy is shown). However, one can note that the error between
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the two expressions increases with increasing range of interaction. For instance, for
r = 0.1, the error is 2.9%; for r = 0.4, it is only 5.5% which is still acceptable.
However, for r = 0.5, the error reaches 12.6% which already corresponds to a poor
approximation.

Looking back at equation (19), one can easily show that the kink energy has the
pseudo-relativistic form

E, = (E"™ 4+ B2CH)/? (20)

where P, = M, V(1 —V?2/C2)~/2 is the relativistic momentum and E* is the rest
energy of the kink (antikink):

E™ = (2v2/3)C, =M, C? (1)
where
M, = 2v2/3C, (22)

is the kink rest mass. It is important to note that K~ and E, reduce, respectively,
to the kink width and kink energy of the ®* chain with nearest-neighbour interaction
when » = 0. As the range of interaction increases (r increases), K~' and E,
increase indefinitely. Consequently, such kinks become energetically less favourable
for the system to support. They could no longer be considered in the low-temperature
state.

2.3. Interaction between kink and phonons: an approximated phase shift calculation

The presence of kinks and phonons in the lattice produces a number of effects, char-
acteristic of kink-kink and kink-phonon interactions. For instance, the continuum
theory reveals that the phonon modes are distorted near the kink core., However,
the important noticeable effect is that the occurrence of the interaction produces the
phonon-kink and kink-phonon phase shifts. These shifts give complete information
on the asymptotic behaviour of the linear and non-linear excitations after their col-
lision in the lattice. Knowledge of the phase shifts is necessary when one wants to
count the phonon states correctly in the presence of non-linear waves (Currie ef al
1980, Theodorakopoulos 1982, Theodorakopoulos and Mertens 1983). In this work,
we have assumed that there are no kink-kink (or kink-antikink) interactions. This
is fulfilled when the separation between kinks and antikinks is at Jeast equal to a
kink thickness. We have also neglected the spatial shifts of the kinks duc to their
interactions with phonons.

In order to calculate the phonon phase shift due to the presence of soliton, one
has to solve the linearized stability equation

rZ = (1= Z +[C(L+7) = r+3ry?]| 2, + 6r(v°), Z,
+ [BT(yz)J:x - (1 - r)z(syz "" 1)]Z =0 (23)

obtained from (10) by substituting y(z,t) by y(z) + Z(x,t) with Z « y. Having
regard to the asymptotic behaviour of equation (23), one obtains

rZ, +[CA+m)+2r2 . — (1~ +22)=0. (24)
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Equation (24) corresponds to the continuum form of equation (13) which describes
the oscillations of the particles near the bottom of the well. The resolution of
equation (23) has appeared to be very difficult. To overcome the difficulty, we have
made a crude assumption by converting the problem to one of finding the phase
shifts in a simple ®* chain which exhibits kinks or antikinks with profile given by
(17). Therefore, we have obtained that the phonon phase shift can be approximated
by (Wada and Schrieffer 1978)

A(g) =2tan~[3Q/(Q* - 1)] (25)

with Q = v/2gC,(r). The r-dependence of A(g) is determined through Cy(+). We
note parenthetically that, when r = 0, A(g) reduces to the exact phonon phase shifts
of the ®* chain with nearest-neighbour interactions.

3. Discreteness effects in the long-range interaction chain

In I, we have used the collective coordinate method associated with Dirac’s con-
strained Hamiltonian dynamics to study the motion of discrete kink in the ®* chain
with a long-range interaction potential. We have introduced new dynamical variables:
the position X'(¢) of the centre of the kink and the discrete fluctuations ; on the
continuum kink (17). The discrete kink therefore has the form

¥ = w(X(@) + 9 (26)

where yi(X(f)) = tanh[K(i — X(t))}] denotes the continuum kink at the discrete
point ¢. X (1), whose expression in the continvum limit is V't -4 X (where X, is the
initial position of the soliton), is now promoted to the rank of any dynamical variable.

Decomposition (26) adds two more degrees of freedom to the system, corre-
sponding to the collective coordinate X (t) and its conjugate momentum P. Then it
is followed by a set of two constraint conditions, for the coupling between the kink
and the atomic degrees of freedom. The choice of the constraints is such that it
decouples the degrees of freedom in the kinetic energy and minimizes t; near the
kink core. These constraints are

=Y v =0 C,=) w ;=0 (27)
; ;

where y;m = dyi/dX. They have been shown to be second-class constraints in
Dirac’s terminology (Dirac 1964, Tomboulis 1975, Boesch and Willis 1950); since
their Poisson brackets do not yield zero, this thus violates the requirements C; = 0
and C, = 0. Because of these constraints (in which the summation is repiaced
by integrals over the length of the lattice in the continwum limit), the formalism
developed by Dirac for constrained dynamical systems has to be applied in order to
derive the evolution equations of the variables X, 1, and their conjugate momenta.
The correct equation of motion is therefore obtained through the Dirac brackets
{Boesch and Willis 1990):

{fag}‘«l = {f:g} + (I/M)({facl}{czﬁg} - {fn Cz}{cpg})
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instead of the conventional Poisson brackets (without an asterisk). f and g are
functions of the variables X, +; and their momenta. M is defined below.
Using transformation (26) and constraints C; and C,, the Hamiltonian (1) sepa-

rates into three parts:

H=H+ H, + H,, (28a)
where

H,=P22M + Uy + (E,/27){1 - cos(27 X)} (280)
is the kink effective Hamiltonian with (see I)

E, = [~r/6(1 - r){[C(1 + ) — r]/r]; + 4}
where
I, = -87*K?sinh ' (x?/ K)[2(q + 1)/3 — 4(q + 1)(g + 4)/15]
J, = 24 K4 sinh ™ (#2/ K)[-54(g + 1)(g+ 4)(g + 9)(g + 16)/567

+788(g+1)(q+4)(g+9)/315-142(¢+1)(q+4)/15+8(q+1)/3]
and

q=(x/K)".
P = MX is the kink momentum and M is the kink effective mass in the discrete
lattice. It has the periodic structure

M = M, + M, cos(2nX) (28¢)
with M, = 4K /3 and M, = (872/3){(g + 1)sinh~!(7?/K).

When the kink width increases, the kink potential energy reduces to the X-

independent term Uy The effect of the lattice discreteness is characterized by a shift
in the rest energy of the kink. In the first-order approximation, this shift is obtained

after a fourth-order expansion of the auxiliary quantity L, while deriving the kink
potential energy (see the appendix). U, is then given by the expression

Uy = E — Z[r/(1 — r)? ) K3{[C(L + 1) — r]/3r - 1}, (28d)

The kink rest energy is therefore lowered below the continuum value E,Eﬂ). Such
lowering has also been obtained recently by other workers, in particular, by Trullinger
and Sasaki (1987) while evaluating the first-order lattice discreteness corrections in
the transfer-operator method for the kink-bearing systems and by Willis and Boesch
(1950) when analysing a similar question (as ours) for the discrete sine-Gordon
model,

The second term of the Hamiltonian (28q) is

Hon= }Y 024 02+ 53 Vi (- ) (22e)

and consists of terms in ; up to quadratic order. It is the Hamiltonian for phonons

which oscillate about the bottom of the wells. The interaction between kinks and

phonons is represented by

Hine = 3 [(u)% = vl + 3= ) 10wy — 1 + 37 Vi (i — o )0 — ;).
(28f)

As presented in section 2.3, this interaction Hamiltonian contributes to the phonon
phase shifts.
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4, Statistical mechanics: the ideal-gas phenomenology

In this section, we use the ideal-gas phenomenology developed by Currie ef al (1980)
to study the thermodynamic properties of the $* chain with long-range interactions,
We consider first the state of Jow-energy excitations in which the particles oscillate
about the bottom of the ®* well. In this state, the excitations of the system are
the classical harmonic phonons with dispersion relations given by (142) and (14b).
Therefore, the low-temperature free energy is given by

Fo=(1/p) [ dgln(pw,) 292)

with # = h/2m; h is the Planck constant. With the aid of a table of integrais
(Gradshteyn and Ryzhik 1975), equation (29a) gives

Fy=(x/B)In[BAr* + 14 C(1+r) +{(1 —r)(1 + r)* +2C(1 + M]'’] (2%)
for the discrete model and

Fy = (x/28)(In(8%8%) {2 + C(1 + r)x? /[re® + (1 = v)*]} + (2/7)
x{2(1-m)2 f{2r+ C(1+m)]} /2 tan~! 7 {[2r+ C(1+)]/2(1—r)?}/?
~ (2/m)1 ~ r)/v/Tltan [7/r/(1 = 1)]) (29¢)

for the continuum model. Equations (29b) and (29¢) show a quantitative difference
between the phonon contribution to the free-energy density in the discrete and the
continuum limits. On the other hand, they show that the phonon contribution .is
always present for any range of interaction. As will be seen below, this is not the
case for the soliton contribution.

When the system is in the large-amplitude regime, above the phonon excitations,
kinks and antikinks (domain walls or simply walls) are generated. We are then in
the presence of ensembles of phonons and walils. The presence of walls in the Jattice
induces a change in the phonon density of states and consequently leads to a thermal
renormalization of the kink-phonon free energy. As previously emphasized by Currie
et al (1980), correct counting of the phonon states in the presence of walls demands
knowledge of the phonon phase shift (25). The change in the phonon density of
states i then given by

Ap(g) = p(g) — polg) = (1/27)[dA(g)/dg]. (30)

po(g) = L /2 is the unperturbed density of states and L is the length of the system
considered to be large. p(g) is the phonon density of states in the presence of domain
walls. We have assumed that the phase shift in the discrete lattice js the same as in
the continuum lattice although this assumption requires g < 1 (the continuum limit).
See for instance the work by Theodorakopoulos er al (1980) where the properties of
the discrete phase shift were determined.

Appealing to Levinson’s theorem (Schift 1968) and to the Friedel (1952) sum rule,
the total number of extended phonon states must be decreased by

P [daseta) =N, (31)
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where N, is the number of bound states. P denotes the Cauchy principal value. The
bound states and their frequencies are determined from the stability equation (23).
Their accurate determination is not vet available since we have not succeeded in
obtajning precise solutjions of equation (23) but, in conformity with the approximation
made in section 2.3, we can use the bound of the stability equation of kink (17) in
the ®* chain with nearest-neighbour interactions. Then, we have two bound states
with frequences wy,; = 0 and w,, = 3.

Considering walls moving at very low velocity, e.g. in the non- re]atmsuc regime,
the change in the phonon free energy due to the presence of walls is

1 x
AR =52 [ dgin(she,)an(s) (320)
BL Jq
which, with the aid of (30) and (31), can be rewritten as
- =N
AF, = Z2RIn(6h) + 5 ﬁLPf dgdA/dg In(w,). (32b)

In view of the applicability of the phenomenological ideal-gas viewpoint, let us as-
sume that in a low-temperature regime the phonons and domain walls are elementary
distinguishable excitations. In addition, in order to neplect the interference of the
walls, we assume that the separation between walls is at least equal to the wall thick-
ness. The statistical problem of finding the characteristic contributions of phonons
and walls to the equilibrium thermodynamic functions of our model is then that of a
dilute gas of solitary waves and small-amplitude phonon excitations. The interactions
between walls and phonons reside in the phase-shift function A(g) and is accom-
modated by the wall self-energy corrections defined as being equal to LAF,. In
addition, the bound state with frequency wy, also contributes to the wall self-energy
density by an amount {1/8) In(3fw,,). Then, the total wall seif-energy is given by

L=LAR+ %'— In{Bhwy; )
=Ny
B

In the course of ca]culatmg the contribution of the walls to the free energy of the
system and finding the wall density, we have to consider the grand partition function
(GPF). Considering that we have an ensemble of phonons, NV, kinks and Ny antikinks,
we define the GPF by the relation (Currie et al 1980)

E=EE,; (34)

In(8%) + 5 In(Biss) + 3o P f dg92 Gl G

where E° is the free GPF; E° = exp(—~BLF,) (e =~ 2.718) with F, given by
equation (29). E, ; is the kink-antikink GPF defined in the ®* model by

Byr= Y exp(BuN)Z,g(N) (35)

N=0

where Z, - is defined in the discrete medium by

N
2= o (f exp{—B[H, (P, X) + £4)} d X dP) (36a)
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(since U(X) is a periodic function) and in the continuum limit by

. 2 oo . N
R = iR (/_w exp[~-B( E, + Ec')]dpk) . (360)

N is the total number of walls. That is N = N, 4+ Np = 2N,. We have assumed
that there is no direct constraint applied toward kinks over antikinks. The winding
number Ny, = Ny — N¢ is then set equal to zero. The superscripts di and ci indicate
respectively the discrete and the continuum index. u is the wall chemical potential.
The free-energy density (phonons + wall contributions) is

F=—(1/BL)InE = Fy + F ¢ (37

where F, - is the contribution of kinks and antikinks to the free-energy density. The
average total wall number density n = N/L is given by

n= _(aF/aﬂ)T,L,_uzﬂ (38)

where one sets ¢ = 0 after calculating the derivative of equation (37). u is set equal
to zero since there is no external constraint on the kink number.

The derivations are performed in section 4.1 for the continuum limit and in
section 4.2 for the discrete limit.

4.1. Free energy and density of the walls in the continuum $* model with the long-range
interaction potential

Inserting equation (20) into equation (36b) and restricting ourselves to the low-
temperature regime, we obtain the expression for the kink-antikink GPF in the con-
tinuum chain as

Ef'c = exp[(L/h)a exp(Bu)] (39)
where

o = [E{Y /Co(r))l2m/ BE]M? expl-B(EL” + £9)]. (40)
Considering (37) and (39), and after some rearrangement, one obtains
Feip = —(1/8h)(4/m)(*/6V28¢)1/2 exp(Bu) exp-B(E” + )]

= — L(4/7)(=/6V2BE) " exp(os) exp(Bu) exp(~BED)  (4D)

with

o, = _%P[ dg%%in(w;'). (42)
Equation (41) gives the contribution of walls to the free energy in the continuum limit.

It is seen that, when the range of interaction is small, the walls play an important
role at low temperatures since F,  is finite and different from zero. However, when
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the range of interaction increases, the wall contribution is found to vanish since
Fk.'l? — 0.

Equation (41), with ¢ = 0, should be compared with the contribution to the
free-energy density of the walls given by

i = —(4/m)(e/V2BE)? exp(~BED)

obtained by the transfer-integral method (sK). Note that this last expression (given
in our dimensionless parameters) does not include the factor 1/8 which appears
as an erroncous term in equation (73) of sK. Except for numerical pre-factors and
the exponential term exp{o;), the two expressions for Ffii give rise to the same
qualitative results. We expect an improved tmnsfer-integré] method (Currie e al
1980) and more precise evaluation of o will lead to good agreement between the
two results.

Differentiating equation (41) with respect to the chemical potential and setting
u = 0 thereafter yield the low-temperature wall density in the continuum limit as

n = (B/6)(27 M, /B)/* exp(o) exp(~BED)
= (1/67Co)(2m) }(BE) 2 exp(o) exp(-BE"). (43)

This shows that the temperature dependence appearing in n® occurs through
ﬁE,E(’) = Eﬁe) /kgT. One sees that n“ decreases when r increases. This result
5 in accordance with the following predictions: since the kink width increases with
increasing =, the number of non-interacting kinks must decrease. In the limit » — 1
(although less consistent here), n® — 0. This confirms the fact that the system
cannot support kinks and antikinks in the infinite-range limit.

4.2. Discreteness effects on the statistical properties of the model with the long-range
interaction potential

In this section, we follow the order of calculation of section 4.1. A combination of
equations (28) and (36a) yvields

By z = expl(1/h)a exp(6u)] (44)
with
a® = /exp{—ﬁ[Hk(X, P)y+ =Y} dXdP (45a)

where H, (X, P) is given by (285). The phonon Hamiltonian contributes to Fg'.
The P-integration is just a Gaussian and yields [2x M (X)/G]*/%

The X-integration is over the entire iength L of the system.

Then equation (45a) takes the form

L
o = exp(~BE%) [ dX (2xM(X)/B)}/* expl~pULX)]  (450)
4]
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with
U (X)=Uy+ (E,/27)[1 ~ cos(27 X)].

Substituting equations (44) and (45b) into (34) and using (37), one obtains the free
energy of the wall in the discrete limit:

. . L 1/2
Ff.li = h,ﬁ‘}l;h exp(Bu) e:xp(—--;ﬁt’Ed‘)/0 dX (2—71-11;('—){-)-) exp[-8U, (X)].
(46)
Then the discrete kink and antikink density is
i L 1/2
wt = £ exploay [ ax (ZMEE) expi-pu, 0 @7)

with
-_1 " 10 82 1 iLd
O'd-l——z—?-r"PA dg—Eln(u}g).

If we make the assumption that o >~ o, then equation (47) can be rewritten as
follows:

i_ gl [t M(X)\'? (©)
ndi=n fjo dX (T) exp{-BU,(X) - B} (48)

This result, which has also been obtained by Willis and Boesch (1990) in the discrete
sine—Gordon lattice, shows that the discreteness of the lattice is characterized by the
X -integral, by the oy term and by the shift of the kink rest energy as it appears in
equations (284), (46) and (48). When the kink width increases, E, and M, tend to
zero. Then U, — U; and M — M, = M, since K = 1/+/2¢£. This leads to
a correction of the free energy and the wall density by an exponential term which
depends on the rest energy shift U, — E{” (Trullinger and Sasaki 1987, Willis and
Boesch 1990). However, when the kink width is large enough, U, reduces to E,Eo)
(since &' — 0) and equations (46) and (48) reduce respectively to the continuum
wall free-energy expression (41) and the continuum wall density (42).

5, Summary

In this paper, we have used the ideal-kink gas phenomenology to caiculate the basic
thermodynamic functions (free energy and density of walls) of the continuum and
the discrete ®* chain complicated with the long-range interaction potential of Kac~
Baker type. Considering the non-relativistic and non-interacting walls, we have shown
that the kink free energy and the kink density decrease when the range of interac-
tion increases. This suggests that the kinks play a minimal role in determining the
low-temperature properties of the system when the range of interaction i very long.
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However, for the short-range interaction case, the kinks and antikinks play an impor-
tant role in the low-energy excitations of the system, and contribute an exponential
term exp(-—ﬁE,ﬂU)) to the free energy and to the density number.

When we take into account the lattice discreteness, the major effect is that the
statistical results of the continuum mode] are corrected by an X-integral term and o 4;-
term. These corrections, as expected, disappear when one approaches the continuum
limit.

The basic results obtained in this paper can easily be used to determine other
thermodynamic functions such as the internal energy denmsity, the entropy and the
specific heat of the long-range interactions model both in the continuum and in
the discrete lattice. Another important point to outline is that, by setting r = G,
our results reduce to those obtained from the ®* model with mearest-neighbour
interactions.

In spite of the interesting results obtained in this paper, we mention that the prob-
lem of kink-phonon interaction in the model wnder consideration has been crudely
approximated and requires a more precise analysis. For nearest-neighbour interaction
models, a general kink density formula, which does not require explicit knowledge
of the kink waveform or its small oscillations (e.g. the bound states and the phase
shift), is known (DeLeonardis and Trullinger 1980). Investigations have been carried
out with a view to applying this formula to the system with a long-range interaction
potential,

Appendix

In this appendix, we present

(i) the expression for the kink energy in the continuum limit (see also sk) and
(ii) the appearance of the energy shift due to the lattice discreteness.

(i) The potential energy (4) can be written as
U = 3 (4tuf -1)"+ Ouf - [0 - )21 o0 ri-il)
= Z[i(y?—l)z'l-cy?—%yiLi]- (A1}

Using equation (8) and going to the continuum limit, we obtain
U=E, + E, (AZ)
where
=1/ dea-w (&%)

and

-1 f dz yyy. (Ad)
-0



Statistical mechanics of & system 3403

Let z = (= — V¥)/¢ and integrate by parts once. Then

V2
E, = EE—/dz vz,

Substituting for y the kink implicit solution (15), one obtains with aid of a table of
integrals

E = (£/2va) {1 4+ (320) (1 + o) (1 - 1Sa)} sinh™![26 /(1 + )]*/?

+ (320)7Y[20(1 + 30)]Y/2(270 — 1)} (AS)
and
E, = (V2[eV2){3{(1 + 306) /0% tan™" /o + [(1 + 90)/(180+/20)]

x tanh ™! [2¢/(1 + 30)]Y% — (60) (1 + 30)'/7). _ (A6)

Since o is a small parameter, we expand E, and E, in powers of o. To order o2,
this yields

E, = (2v2¢/3)(1 + 20 — 8107 (A7)
7 and
Ey= (V&2 L+ Lo - £o?). (A8)

When » — 0, E| and E, reduce to the first-order terms. If we recall that the
kinetic energy is equal to F,, the total kink energy is given by

Ek == El + 2E2.

Note that, for small r, E, reduces to equation (19) which is the kink energy with the
explicit waveform (17). The kink rest energy in the continuum medium is

E® = E,.

(i) With a view 1o deriving the epergy shift due to the lattice discreteness, we
expand the recursive relation (9) up to the fourth-order term. Thus, one obtains,
after replacing y; by the first-order discrete solution f;,

L= —df; + f2 4+ (2/4)[r/(1 = o)L + [C(1 = r) [r] £9). (A9)

Inserting (A9) in (Al), using equation (8) and converting sums t0 integrals, we obtain
for the zero-velocity kink

Up= EWW = Z[r/(1 = vV K3[C(1 + 7) {37 = L. (A10)
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