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J. Phys: Condens. Matter 4 (1992) 3389-3404. Printed in the UK 

Statistical mechanics of the continuum and discrete a4 
system with long-range interaction potential: the soliton 
dilute-gas phenomenology 

P Woafo, T C Kofane and A S Bokasah 
Labratoire de Mhnique ,  Facult6 des Sciences, UnivenitC de YaoundC, BP 812, 
Yaound.6, Cameroun 

Received 14 lune 1991, m final form 24 December 1991 

Abstract. The saliton dilute-gas phenomenology is used to study lhe statktical mechanics 
of the 0' system with long-range interaction potential. Both the continuum and the 
discrete phonon acitations with lheir corresponding dispersion relations and non-linear 
acitations (walls or hks) are investigated. In the continuum model, we show lhat the 
ldnk free energy and density decrease when the range of interaction increases. In the 
discrete model where lhe lrink width is small, as a result of the collective mordinate 
method associated with Dirac's wnstrained Hamiltonian dynamics, the mass and the 
potential energy of kink vary periodically with lhe ldnk position in the lattice. lhk leads 
to a mrrection of lhe statistical results obtained in lhe continuum model. 

1. Introduction 

In the past few decades, a growing interest has been shown in the statistical mechanics 
of non-linear models of condensed-matter systems where the associated field equa- 
tions of motion admit soliton solutions. In the continuum non-linear Klein-Gordon 
systems, such as Qi4 and sinsGordon models, which possess kink solutions (topologi- 
cal solitons), it has been shown, through the functional-integral technique or ideal-gas 
phenomenology, that the low-temperature thermodynamics of the systems are sensi- 
tive to and even dominated by solitons (Krumhansl and Schrieffer 1975, Mazenko and 
Sahni 1978, Schneider and Stoll 1980, Currie et al 1980). In particular, the presence 
of solitons in the system is signalled by a term proportional to e x p ( - E k / k B T )  in 
the low-temperature free energy, where Ek is the energy of the soliton, kB is the 
Boltzmann constant and T is the temperature. 

The functional-integral technique has also been used to study the thermodynamics 
of the continuous system with long-range interaction of Kac-Baker type. By convert- 
ing the functional integral into an equivalent nearest-neighbour problem, Sarker and 
Krumhansl (SK) (1981) evaluated the partition function of the long-range interaction 
model. They obtained the same proportional term and they concluded that, since Eh 
increases with increasing range of interactions while the proportional (exponential) 
term approaches zero, the long-range interaction system undergoes a second phase 
transition in the infinite-range limit. 

All the aforementioned thermodynamics studies have been limited to the contin- 
uum models. The soliton (or the antisoliton) width has therefore been taken to be 
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large enough to avoid the discreteness effects of the lattice. The soliton energy E, 
was just a constant but, in some materials, the soliton extension is just a few lattice 
spacings (one or two) and the discreteness effects on soliton static and dynamical 
properties cannot be neglected (Woafo e! a2 (1991) and references therein; hereafter, 
referred to as I). 

In I, following initial investigations on the lattice discreteness, we have shown that 
in the long-range interaction system the kink energy varies periodically with the kink 
centre-of-mass position. The potential barrier and the pinning frequency suffered 
by the kink decrease when the range of interaction increases. Our purpose in this 
paper is to investigate the discreteness effects on the dilutegas statistical mechanics 
of the long-range interaction Q4 systems. The influence of the range of interaction 
is considered. The organization of the paper is as follows. 

In section 2, we present the discrete a4 lattice with long-range interaction poten- 
tial of Kac-Baker lype. The various low-energy discrete excitations (phonons) of the 
resulting equation of motion are discussed with their corresponding dispersion rela- 
tions. In the large-displacement regime, we show that the implicit kink solution of 
the continuum field can he adequately approximated by an explicit hyperbolic tangent 
profile (at least for some values of the range of interaction). The interaction between 
kinks and phonons is analysed through the linearized stability equation. Owing to 
the complexity of this equation whose explicit solution has not yet been obtained, an 
approximated phase shift which fits well with the short-range case is proposed. 

In section 3, we review the results of the discreteness studies of I. In section 4, 
the ideal dilute-gas phenomenology calculations are presented. The grand partition 
function, the free energy and the density n of kinks and antikinks are evaluated both 
in the continuum and in the discrete limits. In the continuum limit, a comparison 
with the transfer-integral calculation performed by SK is made. In the discrete limit, 
it is seen that, awing to the Xdependence of the kink mass and kink energy (X 
is the position of the kink in the lattice), the discreteness causes corrections to the 
mntinuum statistical mechanics. These corrections are seen to disappear when the 
kink width increases. We show that the kink density decreases when the range of 
interaction increases. The temperature dependence of the kink density n is seen to 
appear through PEP' = E;)/k,T ( E r )  is the r a t  energy of the kink). 

Section 5 is devoted to a summary of our results. 

2. The a4 lattice with long-range interaction potential 

The Hamiltonian of the discrete a4 chain with long-range interaction potential has 
the form 

where yi is a scalar dimensionless displacement of the ion i on a onc-dimcnsional 
lattice. The equilibrium sites of ions are zi = ib. The lattice spacing b is set equal 
to unity. The first term of the Hamiltonian (1) is the kinetic energy. The dot on yi 
represents time differentiation. V(yi) is the double-well substrate potential with a 
pair of minima yi = fl. Its simplified form is 
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The ions interact via a pair potential Vij which is taken to be of KacBaker form 
(Baker 1961, Kac and Helfand 1973) 

C is a constant measuring the elastic energy of the lattice. r is the parameter which 
characterized the range of interaction with 0 < r < 1. li - j l  is the distance between 
ions on sites i and j. The virtue of this interaction potential, commonly encountered 
in physical systems such as an king ferromagnet lattice, is that the range of interaction 
can he mried continuously. The interaction between particles falls off exponentially 
as the separation between them increases. The pre-factor 1 - r in equation (3) is 
chosen to ensure that the total potential experienced by one atom, due to all others, 
is finite in the thermodynamic limit where the number N of particles is infinite. This 
total potential is equal to cjsi vij = C. 

When T = 0, the model reduces to the well known aP4 chain with first-neighbour 
interactions. On the other hand, the limit r + 1 which should be taken only when 
N + M defines the infinite-range problem. In the Hamiltonian (l), the potential 
energy of the discrete chain is the sum of the last two terms: 

v.. *I = [C(I -r)/2r]r+jl .  (3) 

U = $ yj(y; - Yj)Z + : C ( y ?  - 1)2. 

gi - yi + y: + [C(I - r)/r] z r l i - j l ( y j  - yj) = 0. 

(4) 

From the Hamiltonian (l), the equation of motion of the ith particle is 

(5) 

Let 
d = 1 - [C(l - r)/r] rli-’l = 1 - 2C (6) 

j E i  

and define the auxiliary quantity (see SK) 

Equation (5) can be rewritten as 
6; - dy; + YH = L;(Y;). 

&(vi) satisfies the recursive relation 

(.+ ~ - l ) L i  = L;+l t &-l + [c(1- r)/rl(~i+~ + ~ i - ~  - 27-y;). 

r g , , + [ ~ ( 1 + r ) - r I y , , + r y , , - ( 1 - r ) ~ ( Y + y ~ - y ) = 0 .  3 

(9) 
We can make the continuum approximation yi -+ y(z,t), L { ( t )  -, L ( z , t ) ,  to obtain 
the partial differential equation 

(10) 
For r = 0, equation (10) reduces to the a* continuum equation (Krumhansl and 

Schrieffer 1975). 
The discrete equation (8) and the continuum equation (10) have three trivial 

solutions which correspond to the unstable state y; = 0 or y = 0 and the two stable 
states yi = il. Apart from these solutions, there are other solutions of equation (8) 
and equation (10): the small-amplitude solutions which are discussed in section 2.1 
and the soliton solution discussed in section 22. In section 23, we analyse the 
problem of interaction between the kink and phonons. 
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21. Discrere and continuum phonons 

2.1.1. Case 1: oscillations about y = 0. The first small-amplitude states of the model 
arc the unstable oscillations about the top of the double well (y = 0). Neglecting the 
non-linear term yp in equation (8) in view of finding linear wave solutions and using 
the recursive relation (9, one obtains the discrete equation 

( rz+  1)ij,-r(iiit1 = [rZ+ 1 -2C(1+r)lyj+ [c(1 + ~ ) - ~ ] ( Y ; ~ ~  +Y;-~) 
(11) 

whose solution is 

y; = asin(gi-w,t)  

with the discrete dispersion relation (a is the amplitude) 

w i  = {r' + 1 - 2C( I + r )  + Z[C(I + T )  - 9-1 cos g} / [~ rcosg  - (rz  + I)]. 
( W  

For small values of the dimensionless wavevector g, equation ( l a )  gives 

U: = -1 + C(I + r )g2/[(r-  I)'+ rg2] (126) 
which is the continuum dispersion relation that can be obtained from the linear form 
of equation (10). In order that U: (equation (126)) be positive, g must satisfy the 
inequality relation 

g2 > (1 - r ) / [C(1+ r )  - 71. 

21.2. Case 2: oscillations about the bottom ofthe well yi = 51.  This state corresponds 
to the situation in which all the particles are lowered to the bottom of one of the 
wells. Then we can write y, = -I1 + v, where vi is a linear wave. Substitution in 
equation (8) yields 

( r z + l ) ~ i - r ( ~ i + l + ~ ; - , )  = -~[r~+1+C(1+r)]v~+[~r+C(l+r)](v;+~+~;_~). 

(13) 
%king vi = a s i n ( g i  - w g t )  and substituting in equation (13), we obtain the discrete 
dispersion relation 

U:= { - 2 [ 2 r + C ( 1 + r ) ] c o s g + [ r Z + 1 + C ( 1 + r ) ] } / ( r 2 + 1 - 2 r c o s g ) .  

( W  

When g -+ 0,  equation (14a) reduces to 

w2 9 = 2 + C(1 + r)gZ/[(r - 1)2 + rgzj (146) 
which corresponds to the dispersion relation of the continuum model. It is obvious 
that, when r = 0,  relations (14a) and (14b) reduce to the discrete and continuum 
dispersion relations of the a4 chain with fist-neighbour interactions. We shall refer 
to the dispersion relations ( 1 4 ~ )  and (146) when studying the statistical mechanics of 
the system. 
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22. *e-amplifude solutions 

Fbr large-amplitude solutions (kinks), equation (8) is analytically intractable but, since 
its continuum form equation (10) can be solved, one can take its solution as the first- 
order solution of equation (8) (see I). Neglecting the fourth-order term rjise in 
equation (IO), in the spirit of the continuum approximation and because this term 
vanishes when r --* 0 (or for zero-velocity solitons), the solution y(z ,  t) of equation 
(10) is given by the implicit formula (SK) 

f ( I -  Vt)/& = - 3 ( ~ / 2 ) ' / ~ ~ i n h - ' [ 2 a / ( l  + ~ ) ] ' / ~ y  

+ (1 + 3u)'/'tanh-'{[(l + 3 u ) / ( l  + U  + 2 ~ ~ y ) ] ' / ~ y }  

E2 = [C(l+ r )  - r - V'(I - r) '] / (1  - r)' 

(15) 

where 

(IQ) 
and 

U = r / (1  - r)'t2. (166) 

y ( r , t )  is a topological soliton with a width measured by E and which propagates 
with a constant velocity V in the absence of perturbations. The psitive (negative) 
sign corresponds to a kink (antikink). 

In I, we have simplified the implicit solution (15) Ly the hyperbolic tangent wave- 
form 

yk(r , t )  = f tanh[IC(z-  Vt)] 

where 

IC2 = 1/2e2 = 1/2[C,Z(r) - Vz] 

and 

C,"(r) = [C(1+ r )  - ?-]/(I - r)' 

IC-' = \/zc defines the spatial extension of the kir 
range of interaction tends to the infinite limit ( r  - 1). 

It increases in finite 

(1%) 

as the 
- 
There are WO reasons which support the validity of the approximation (17). First, 

the soliton profile given by (15) suffers very slightly because of the approximation. 
Second, the soliton energy obtained in the continuum limit from (17) is 

which approximately corresponds to 

calculated by SK from the implicit solution (15) (see the appendix where the integra- 
tion of the kink energy is shown). However, one can note that the error between 
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the two expressions increases with increasing range of interaction. For instance, for 
T = 0.1, the error is 29%; for T = 0.4, it is only 5.5% which is still acceptable. 
However, for T = 0.5,  the error reaches 126% which already corresponds to a poor 
approximation. 

Looking back at equation (19). one can easily show that the kink energy has the 
pseudo-relativistic form 

where Pk = MkV( 1 - V2/C2)-1/2 is the relativistic momentum and EP) is the rest 
energy of the kink (antikink): 

is the kink rest mass. It is important to note that I P 1  and Ek reduce, respectively, 
to the kink width and kink energy of the cP4 chain with nearest-neighbour interaction 
when P = 0. As the range of interaction increases (T increases), K - l  and Ek 
increase indefinitely. Consequently, such kinks become energetically less favourable 
for the system to support. They could no longer be considered in the low-temperature 
state. 

23. Interaction between kink and phonons: an approximated phase shy1 calculation 

The presence of kinks and phonons in the lattice produces a number of effects, char- 
acteristic of kink-kink and kink-phonon interactions. Fbr instance, the continuum 
theory reveals that the phonon modes are distorted near the kink core. However, 
the important noticeable effect is that the Occurrence of the interaction produces the 
phonon-kink and kink-phonon phase shifts. These shifts give complete information 
on the asymptotic behaviour of the linear and non-hear excitations after tbcir col- 
lision in the lattice. Knowledge of the phase shifts is necessary when one mnts to 
count the phonon states correctly in the presence of non-linear waves (Currie et a1 
1980, Theodorakopoulos 1982, Theodorakopoulos and Mertens 1983). In this work, 
we have assumed that there are no kink-kink (or kink-antikink) interactions. This 
is fulfilled when the separation between kinks and antikinks is at least equal to a 
kink thickness. We have also neglected the spatial shifts of the kinks due to their 
interactions with phonons. 

In order to calculate the phonon phase shift due to the presence of soliton, one 
has to mlve the linearized stability equation 

~2~~ - ( 1 - ~ ) ' ~ + [ C ( 1 + r ) - r + 3 r y ~ ] 2 ~ , + 6 r ( y ~ ) ~ Z ~  

+ [3r(yZ),, - ( I  - ~ ) ~ ( 3 y '  - 1)]z = o (23) 

obtained from (10) by substituting y ( z , t )  by y(x) + Z(r,t) with 2 
regard to the asymptotic behaviour of equation (23), one obtains 

y. Having 

T i a z  + [C(1 + T )  + 2T]Z,,- (1 - T ) 2 ( i  + 2 2 )  = 0. (24) 
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Equation (24) corresponds to the continuum form of equation (13) which describes 
the oscillations of the particles near the bottom of the well. The resolution of 
equation (23) has appeared to be very difficult. 'Ib overcome the difficulty, we have 
made a crude assumption by converting the problem to one of finding the phase 
shifs in a simple iP4 chain which exhibits kinks or antikiiks with profile given by 
(17). Therefore, we have obtained that the phonon phase shift can be approximated 
by (Wada and Schrieffer 1978) 

A(g) = 2 tan-'[3Q/(Q2 - l)] 

with Q = \/ZsC,(r). The rdependence of A(g) is determined through C,(r). We 
note parenthetically that, when T = 0, A(g) reduces to the exact phonon phase shifts 
of the iP4 chain with nearest-neighbour interactions. 

3. Discreteness effects in the long-range interaction chain 

In I, we have used the collective coordinate method associated with Dirac's con- 
strained Hamiltonian dynamics to study the motion of discrete kink in the @4 chain 
with a long-range interaction potential. We have introduced new dynamical variables: 
the position X (  t )  of the centre of the kink and the discrete fluctuations Gi on the 
continuum kink (17). The discrete kink therefore has the form 

Yi  = Yl(X(1)) t +i (26) 

where y l ( X ( 1 ) )  = t a n h [ K ( i -  X ( t ) ) ]  denotes the continuum kink at the discrete 
point i. X ( t ) ,  whose expression in the continuum limit is Vt  + X ,  (where X ,  is the 
initial position of the soliton), is now promoted to the rank of any dynamical variable. 

Decomposition (26) adds two more degrees of freedom to the system, corre- 
sponding to the collective coordinate X(t) and its conjugate momentum P. Then it 
is followed by a set of two constraint conditions, for the mupling between the kink 
and the atomic degrees of freedom. The choice of the constraints is such that it 
decouples the degrees of freedom in the kinetic energy and minimizes ?,hi near the 
kink core. These constraints are 

(27) 
i(1) : c, = y;(*)$i = 0 c,=CYh w ; = o  

i 

where y[(') = dyb/dX. They have been shown to be second-class constraints in 
Dirac's terminology (Dirac 1964, 'Ibmboulis 1975, Boesch and Willis 1990); since 
their Poisson brackets do not yield zero, this thus violates the requirements C, = 0 
and C, = 0. Because of these constraints (in which the summation is replaced 
by integrals over the length of the lattice in the continuum limit), the formalism 
developed by Dirac for constrained dynamical systems has to be applied in order to 
derive the evolution equations of the variables X, +i and their conjugate momenta. 
The correct equation of motion is therefore obtained through the Dirac brackets 
(Boesch and Wdlis 1990): 

tf,gl' = If,gI+ ( ~ / m t . f ~ ~ l H C ~ , g l -  tf,c,Hc,>g)) 
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instead of the conventional Poisson brackets (without an asterisk). f and g are 
functions of the variables X, Gi and their momenta. A4 is defined below. 

Using transformation (26) and constraints C, and C,, the Hamiltonian (1) sepa- 
rates into three parts: 

where 

is the kink effective Hamiltonian with (see I) 

where 
I, = -8x3KZsinh-1(n2/K)[2(q+ 1) /3-4(q+ l ) (q+4) /15]  

J1 = 241i4nsinh-'(n2/K)[-54(q+ l ) ( q + 4 ) ( q +  9 ) ( q +  16)/567 

and 

P = A4.k is the kink momentum and M is the kink effective mass in the discrete 
lattice. It has the periodic structure 

with Ma = 4 K / 3  and MI = (8n2/3)(q+ l)sinh- '(x2/K).  
When the kink width increases, the kink potential energy reduces to the X- 

independent term U,,. 'Ihe effect of the lattice discreteness is characterized by a shift 
in the rest energy of the kink. In the first-order approximation, this shift is obtained 
after a fourth-order expansion of the auxiliary quantity Li while deriving the kink 
potential energy (see the appendix). U, is then given by the expression 

The kink r a t  energy is therefore lowered below the continuum value Er). Such 
lowering has also k e n  obtained recently by other workers, in particular, by ?fullinger 
and Sasaki (1987) while evaluating the first-order lattice discreteness corrections in 
the transfer-operator method for the kink-bearing systems and by Wdlis and Boesch 
(1990) when analysing a similar question (as ours) for the discrete sine-Gordon 
model. 

H = H ,  + H,, + Hint (a) 

H, = P Z / 2 M  + U o + ( E , / 2 n ) [ l - c o s ( 2 x X ) ]  (%) 

E, = [-r/6(1 - r)21{[C(l+ T )  - 7-]/r11 + 5,)  

+788(qtl)(qt4)(qt9)/315-142(q+1)(~+4)/15+8(q+ 11/31 

q = ( n / k 7 ) 2 .  

M = MO + MI cos(2xX) (W 

U, = E?) - &[r/(l-  r)211<3{[~(1+ r )  - T1/3r - +,I. (2w 

The second term of the Hamiltonian (2&) is 

H,,  = iC11' t 7b; t ; c y j ( $ ;  - GjI2 (2W 
i 

and consists of terms in 7bi up to quadratic order. It is the Hamiltonian for phonons 
which mcillate about the bottom of the wells. The interaction between kinks and 
phonons is represented by 

Wi"t = CI(Yt)3 - Y t l 7 b i  + $ - C[(Yt)2 - 11$? + - V j ( Y t  - Y{)(rli - rlj). 
Wf) 

As presented in section 2.3, ihis interaction Hamiltonian contributes to the phonon 
phase shifts. 
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4 Statistical mechanics: the ideal-gas phenomenology 

In this section, we use the ideal-gas phenomenology developed by Currie ef a1 (1980) 
to study the thermodynamic properties of the 9'' chain with long-range interactions. 
We consider first the state of low-energy excitations in which the particles oscillate 
about the bottom of the a4 well. In this state, the excitations of the system are 
the classical harmonic phonons with dispersion relations given by (14a) and (146). 
Therefore, the low-temperature free energy is given by 

F~ = ( I / P ) S r d g  0 l n ( p b g )  (294  

with TC = h/27r; h is the Planck constant With the aid of a table of integrals 
(Gradshteyn and Ryzhik 1975). equation ( 2 9 ~ )  gives 

Fo = (n/p)ln[@r' + 1 + C(l + T )  + [ ( l  - ~ ) ( 1  + r)'+ 2C(1 + T)] ' /* I  (296) 

for the discrete model and 

Fo = (7r/20)(1n(Pzh2){2 + c(1+ T ) r z / [ r r 2  + (1 - .)'I} + ( 2 / r )  

X { Z ( ~ - T ) ~ / [ ~ T + C ( ~ + T ) J } ~ ' ~  tan-' ~ ~ [ ~ T + c ( I + P ) ] / ~ ( ~ - T ) ' } ~ ~ ~  

- (2/n)[(1- r ) / f l  t a n - ' [ r f i / ( l -  r ) ] )  (2%) 

for the continuum model. Equations (29b) and (2%) show a quantitative difference 
between the phonon contribution to the free-energy density in the discrete and the 
continuum limits. On the other hand, they show that the phonon contribution is 
always present for any range of interactioa As will be seen below, this is not the 
case for the soliton contribution. 

When the system is in the large-amplitude regime, above the phonon excitations, 
kinks and antikinks (domain walls or simply walls) are generated. We are then in 
the presence of ensembles of phonons and walls. The presence of walls in the lattice 
induces a change in the phonon density of states and consequently leads to a thermal 
renormalization of the kink-phonon free energy. As previously emphasized by Currie 
er al (1980), correct counting of the phonon states in the presence of walls demands 
knowledge of the phonon phase shift (25). The change in the phonon density of 
states is then given by 

A&) = P(g) - P o b )  = (1/2r)[da(g)/dgl. (30) 

po(g) = L/27r is the unperturbed density of states and L is the length of the system 
considered to be large. p(g) is the phonon density of states in the presence of domain 
walls. We have assumed that the phase shift in the discrete lattice is the Same as in 
the continuum lattice although this assumption requires g < 1 (the continuum limit). 
See for instance the work by Theodorakopoulos er al (1980) where the properties of 
the discrete phase shift were determined. 

Appealing to Levinson's theorem (Schift 1968) and to the Friedel (1952) sum rule, 
the total number of extended phmon states must be decreased by 

I' d g A d g )  = -Nb (3 1) I 
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where Nb is the number of bound states. P denotes the Cauchy principal value. The 
bound states and their frequencies are determined from the stability equation (23). 
Their accurate determination is not yet available since we have not succeeded in 
obtaining precise solutions of equation (23) but, in conformity with the approximation 
made in section 23, we can use the bound of the stability equation of kink (17) in 
the W' chain with nearest-neighbour interactions. Then, we have two bound states 
with frequences wbl = 0 and wb2 = 3. 

Considering walls moving at very low velocity, e.g. in the non-relativistic regime, 
the change in the phonon free energy due to the presence of walls is 

which, with the aid of (30) and (31), can be rewritten as 

AF, = -Nbin(pA) P L  + 2rrpL PJd 'dgdA/dg  ln(w,). (3%) 

In view of the applicability of the phenomenological ideal-gas viewpoint, let us as- 
sume that in a low-temperature regime the phonons and domain walls are elementary 
distinguishable excitations. In addition, in order to neglect the interference of the 
walls, we assume that the separation between walls is at least equal to the wall thick- 
ness. Thc statistical problem of finding the characteristic contributions of phonons 
and walls to the equilibrium thermodynamic functions of our model is then that of a 
dilute gas of solitary waves and small-amplitude phonon excitations. The interactions 
between walls and phonons reside in the phase-shift function A(g) and is accom- 
modated by the wall self-energy corrections defined as being equal to LAF,. In 
addition, the bound state with frequency wb2 also contributes to the wall self-energy 
density by an amount ( l /P)  In(Ptwbz). Then, the total wall self-energy is given by 

1 C = LAF,  + - - In(PTwbz) 
P 

In the course of calculating the contribution of the walls to the free energy of the 
system and finding the wall density, we have to consider the grand partition function 
(GPF). Considering that we have an ensemble of phonons, N k  kinks and N r  antikinks, 
we define the GPF by the relation (Currie el a1 1980) 

E = Eo Ek,r (34) 

where Ea is the free GPF; En = exp(-PLFo) (e N 2.718) with Fo given by 
equation (29). E k , ~  is the kink-antikink GPF defined in the a4 model by 

Ek,r = e x p ( P w N ) Z k , r ( W  
N=O 

where Z k , ~  is defined in the discrete medium by 

(35) 

Zdi-- - 2 (/exp{-PIIfk(P,X)+Cd']}dXdP 
k , k  - N ! h N  
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(since U ( X )  is a periodic function) and in the continuum limit by 

N is the total number of walls. That is N = Nk + Nk- = 2Nk.  We have assumed 
that there is no direct constraint applied toward kinks over antikinb. The winding 
number Nw = Nk - NF is then set equal to zero. The superscripts di and ci indicate 
respectively the discrete and the continuum index. p is the wall chemical potential. 
The free-energy density (phonons + wall contributions) is 

F = - ( l /PL)ln E = Fo + Fk,r 07) 
where Fk,c is the contribution of kinks and antikinks to the free-energy density. The 
average total wall number density n = N/L is given by 

where one sets p = 0 after calculating the derivative of equation (37). p is set equal 
to zero since there is no external constraint on the kink number. 

The derivations are performed in section 4.1 for the continuum limit and in 
section 4.2 for the discrete limit. 

4.1. Free energy and densiry of the walls in the c o n h u m  a4 mode/ with the long-range 
interaction potential 

Inserting equation (20) into equation (366) and restricting ourselves to the low- 
temperature regime, we obtain the expression for the kink-antikink GPF in the con- 
tinuum chain as 

E‘’- k.k = exp[(L/h)aciexp(Pp)] (39) 

aci = [ ~ p ’ / ~ , ( r ) l [ 2 ? r / ~ ~ p ) l ’ / ’ e x p [ - , ~ ( ~ p )  + .z~~)].  

where 

(40) 

Considering (37) and (39), and after some rearrangement, one obtains 

F$ = -(l /~h)(4/?r)(7t3/6JZP~)’/2exp(Pp) exp[-P(Ep) + C“)] 

= - $(4/7~)(n/6d@E)’/~ exp(crCi) exp(Pp) exp(-PEp’) (41) 

with 

Equation (41) gives the contribution of walls to the free energy in the continuum limit. 
It is seen that, when the range of interaction is small, the walls play an important 
role at low temperatures since Fk,i; is finite and different from zero. However, when 
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the range of interaction increases, the wall contribution is found to vanish since 

Equation (41), with p = 0, should be compared with the contribution to the 
F - - 0 .  h.k 

freeenergy density of the walls given by 

F& = - ( 4 / ~ ) ( e / J Z ~ ~ ) ' / ' e x p ( - ~ ~ ) )  

obtained by the transfer-integral method (SK). Note that this last expression (given 
in our dimensionless parameters) does not include the factor 1/p which appears 
as an erroneous term in equation (73) of sK. Except for numerical pre-factors and 
the exponential term exp(uCi), the lwo expressions for Pi- give rise to the same 
qualitative results. We expect an improved transfer-integral method (Currie er al 
1980) and more precise evaluation of uCi will lead to good agreement between the 
two results. 

Differentiating equation (41) with respect to the chemical potential and setting 
p = 0 thereafter yield the low-temperature wall density in the continuum limit as 

nci = ( P / ~ T ) ( Z T M ~ / P ) ' / ~  exp(oCi)exp(-@Ef)) 

k,k 

= ( 1  /6~C,,)(2r)'/~( @Ef)) ' /2exp( uti) exp(-PEf)). (43) 

This shows that the temperature dependence appearing in nci occurs through 
P E P )  = Ef) / / c ,T .  One sees that nci decreases when r increases. This result 
is in accordance with the following predictions: since the kink width increases with 
increasing r, the number of non-interacting kinks must decrease. In the limit T 4 1 
(although less mnsistent here), nci - 0. This confirms the fact that the system 
cannot support kinks and antikinks in the infiniterange limit. 

4.2. Discreteness #ects M the statistical properties of the model wilh the long-range 
interaction potential 

In this section, we follow the order of calculation of section 4.1. A combination of 
equations (28) and ( 3 6 ~ )  yields 

Edi- K , k  = exp[(1/h)ad'exp(@p)] (44) 

with 

,di = / exp{-P[Nk(X,P)+  C d i ] ) d X d P  (454 

where H k ( X , P )  is given by (286). The phonon Hamiltonian contributes to Fti. 
The P-integration is just a Gaussian and yields [ ~ T M ( X ) / P ] ' / ~ .  

The X-integration is over the entire length L of the system. 
Then equation (45a) takes the form 

ad' = exp(-PCdi) d X  ( 2 ~ M ( X ) / p ) ' / ~ e x p [ - P U ~ ( X ) 1  (45b) 
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with 

U k ( X ) =  Uo+(El /2n)[ l -cos(2~X)] .  

Substituting equations (44) and (456) into (34) and using (37), one obtains the free 
energy of the wall in the discrete limit: 

Then the discrete ldnk and antikink density is 

with 

If we make the assumption that udi = uti, then equation (47) can be rewritten as 
follows: 

ri di = n c i L I L d X  (r) M(X) ’’’ exp{-P[Uk(X)- EP’l}. 
L 

This result, which has also been obtained by Willis and Boesch (1990) in the discrete 
sineGordon lattice, shows that the discreteness of the lattice is characterized by the 
X-integral, by the udi term and by the shift of the kink rest energy as it appears in 
equations (ZM), (46) and (48). When the kink width increases, E and M I  tend to 
zero. Then U, -+ U, and M - MO = Mk since K = I/&(. This leads to 
a correction of the free energy and the wall density by an exponential term which 
depends on the rest energy shift U,, - Er) (’Ihllinger and Sasaki 1987, Willis and 
Boesch 1990). However, when the kink width is large enough, U, reduces to E r )  
(since K -+ 0 )  and equations (46) and (48) reduce respectively to the continuum 
wall free-energy expression (41) and the continuum wall density (42). 

5. Summary 

In this paper, we have used the ideal-kink gas phenomenology to calculate the basic 
thermodynamic functions (free energy and density of walls) of the continuum and 
the discrete Q 4  chain complicated with the long-range interaction potential of Kao 
Baker type. Considering the non-relativistic and non-interacting walls, we have shown 
that the kink free energy and the kink density decrease when the range of interac- 
tion increases. This suggests that the kinks play a minimal role in determining the 
low-temperature properties of the system when the range of interaction is wry long. 



3402 P Woafo et a1 

However, for the short-range interaction case, the kinks and antikinks play an impor- 
tant role in the low-energy excitations of the system, and contribute an exponential 
term e x p ( - P E f ' )  to the free energy and to the density number. 

When we take into account the lattice discreteness, the major effect is that the 
statistical results of the continuum model are corrected by an X-integral term and udi- 
term. These corrections, as expected, disappear when one approaches the continuum 
limit. 

The basic results obtained in this paper can easily be used to determine other 
thermodynamic functions such as the internal energy density, the entropy and the 
specific heat of the long-range interactions model both in the continuum and in 
the discrete lattice. Another important point to outline is that, by setting T = 0, 
our results reduce to those obtained from the Q 4  model with nearest-neighbour 
interactions. 

In spite of the interesting results obtained in this paper, we mention that the prob- 
lem of kink-phonon interaction in the model under consideration has been crudely 
approximated and requires a more precise analysis. For nearest-neighbour interaction 
models, a general kink density formula, which does not require explicit knowledge 
of the kink waveform or its small oscillations (e.g. the bound states and the phase 
shift), is hown (DeLeonardis and Tlullinger 1980). Investigations have been carried 
out with a view to applying this formula to the system with a long-range interaction 
potential. 

Appendix 

In this appendk, we present 

(i) the expression for the kink energy in the continuum Limit (see also SK) and 
(ii) the appearance of the energy shift due to the lattice discreteness. 

(i) The potential energy (4) can be written as 

Using equation (8) and going to the continuum limit, we obtain 

U = E,  + E, 

where 
m 

E - l  d 2 ( l - y 4 )  
1 - 4 1 ,  

and 
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Let L = (I - Vt) /E  and integrate by parts once. Then 

Substituting for y the kink implicit solution (15). one obtains with aid of a table of 
integrals 

E, = ( c / 2 6 ) { 1  + (32u) - ' ( l+  u)(1 - 15u)]sinh-'[2u/(l+ U)]'/' 

+ (32u)-'[2u(l  + 3 ~ ) ] ~ / ' ( 2 7 u -  1)} 

and 

Ez = (VZ/E&){$[(1 + 3 u ) / ~ ] ~ ' ~ t a n - ' f i +  [(1+ 9 u ) / ( 1 8 u a ]  

x tanh-'[2u/(l  + 30)]'~'- (6u)- ' (1+ 3~)'~'). (A6) 

Since U is a small parameter, we expand E, and Ez in powers of U. To order uz, 
this yields 

E ,  = (2&</3)(1 + %U- &a2) 

Ez = (V ' /€f i ) ($  + &U- &U'). 

('47) 

and 

(AS) 

When P - 0, E, and Ez reduce to the first-order terms. If we recall that the 
kinetic energy is equal to E', the total kink energy is given by 

Ek = E, + ZE,. 
Note that, for small r, Ek reduces to equation (19) which is the kink energy with the 
explicit waveform (17). The kink rest energy in the continuum medium is 

(ii) With a view to deriving the energy shift due W the lattice discreteness, we 
expand the recursive relation (9) up to the fourth-order term. Thus, one obtains, 
after replacing yi by the first-order discrete solution fi, 

Li = -dfi + f? + (2/4!)[r/(I - r)']{LI4') -t [C(1 - ~-)/r]f,!4"]. (-49) 

Inserting (As) in (Al), using equation (8) and converting sums to integrals, we obtain 
for the zero-velocity kink 

uo = E?) - & [ P / ( I -  P)Z]K3[C(1+ T) /3C - $1. (-410) 
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